Dual Learning-Based Safe Semi-Supervised Learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Learning Safe Prediction for Semi-Supervised Regression

Semi-supervised learning (SSL) concerns how to improve performance via the usage of unlabeled data. Recent studies indicate that the usage of unlabeled data might even deteriorate performance. Although some proposals have been developed to alleviate such a fundamental challenge for semisupervised classification, the efforts on semi-supervised regression (SSR) remain to be limited. In this work ...

متن کامل

Graph-Based Semi-Supervised Learning

While labeled data is expensive to prepare, ever increasing amounts of unlabeled data is becoming widely available. In order to adapt to this phenomenon, several semi-supervised learning (SSL) algorithms, which learn from labeled as well as unlabeled data, have been developed. In a separate line of work, researchers have started to realize that graphs provide a natural way to represent data in ...

متن کامل

Margin-based Semi-supervised Learning

In classification, semi-supervised learning occurs when a large amount of unlabeled data is available with only a small number of labeled data. In such a situation, how to enhance predictability of classification through unlabeled data is the focus. In this article, we introduce a novel large margin semi-supervised learning methodology, utilizing grouping information from unlabeled data, togeth...

متن کامل

Tracking-Based Semi-Supervised Learning

In this paper, we consider a semi-supervised approach to the problem of track classification in dense 3D range data. This problem involves the classification of objects that have been segmented and tracked without the use of a class-specific tracker. We propose a method based on the EM algorithm: iteratively 1) train a classifier, and 2) extract useful training examples from unlabeled data by e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2018

ISSN: 2169-3536

DOI: 10.1109/access.2017.2784406